

SYLLABUS PREDMETA

General information

Course title:	Fundamentals of Electrical Engineering II
ISVU¹ course code:	38916
Studies in which the course is taught:	Study of mechatronics
Course Instructor:	Filip Žugčić mag.ing.el
Course Assistant:	Dr.sc. Anamarija Kirin
ECTS credits:	5.0
Semester of the course execution:	II
Academic year:	2022./2023.
Exam prerequisites:	-
Lectures are given in a foreign language:	-
Aims:	The objective of the course is to acquaint students with variable and alternating sizes, the basics of magnetism, transient phenomena in R, L, C circuits, and the analysis of the AC circuit.

Course

Course structure	Number of contact	Number of contact	Student's requirements by
	hours per week:	hours per semester:	type of teaching:
Lectures:	2	30	attendence 50%
Tutorials:	2	20	attendance 80%
Practical (lab) sessions:	1	10	attendance 100%
Seminars:			
Field work:			
Other:			
TOTAL:	+	60	

Monitoring of students' work, knowledge evaluation and learning outcomes

	LEARNING OUTCOMES	FACTORS AFFECTING THE	MAXIMUM
Formation of the grade	(upon completion of the	GRADE (e.g. term paper,	NUMBER OF
during the implementation	course the student should be	practical work, presentation,	POINTS PER
of teaching:	able to:))	FACTOR
	I1: Define the characteristic		
(Define from minimum 5	magnitudes of the		
to maximum 10 learning	alternating currents and		
outcomes)	voltages (current, peak,		
	mean and effective values),		
	their vector representation		
	and the basics of magnetism		
	I2: Explain the laws of the		
	general relation between		
	current and voltage on		
	resistance, capacity,		
	inductance and inductance		
	I3: Solve complex networks		
	with a symbolic complex		
	account for the sine wave of		
	voltages and currents in the		
	network		
	I4: Formulate transient		
	phenomena in the R-L-C		
	circuit (oscillation,		
	damping), and phenomena		

 $^{^{\}rm 1}$ ISVU – Information System of Higher Education Institutions in Croatia

SYLLABUS PREDMETA

	and effects of resonance in electrical network I5: Normalize the characteristic quantities in a three-phase system (phase and line voltage and current, operating, reactive and apparent power) I6: Explain the basic principles of transformers, synchronous and asynchronous machines and transmission of electricity in the transmission and		
	distribution system		
Alternative formation of the grade (I1-I10)	or alternative formation of th Written exam 70% final grade-12 Oral exam 30% of final grade	_	TOTAL: 100 points
Students' competencies	Students will gain general and expert knowledge of variable and alternating sizes, the behavior of resistors, capacitors, and coils in alternating circuits, and learn methods to solve AC electrical circuits		

Prerequisites for course	Attendance at classes and laboratory exercises
approval (lecturer's	
signature):	
Prerequisites for taking	Teacher's signature
exams:	
Grading scale:	(According to the Regulations on student assessment of Karlovac University of
	Applied Sciences, Article 9, Paragraph 5)
	90-100 - excellent (5) (A)
	80 to 89.9 - very good (4) (B)
	65 to 79.9 - good (3) (C)
	60 to 64.9 - sufficient (2) (D)
	50 to 59.9 - sufficient (2) (E)
	0 to 49.9 – fail (1) (F)
	Students are graded during class, what forms 70% of final exam. Students who achieve 50% (35 points) and more are allowed to take the final exam. The score on final exam makes 30% of the final grade.

ECTS structure

ECTS credits allocated to the course reflect the total burden to the student during adoption of the course content. Total contact hours, relative gravity of the content, effort required for exam preparation, as well as, every other possible burden are taken in account:

possible but dell die taken in decount.					
Attendance	Term paper	Composition	Presentation	Continuous	Practical work
(active				assessment and	
participation)				evaluation	
0.5					
Independent work	Project	Written exam	Oral exam	Other	
		3	1.5		

SYLLABUS PREDMETA

Review of topics/units per week associated with learning outcomes

		Review of topics/ units per week associated with learning outcomes				
Week	Lectures topics/units and learning outcomes:	Tutorials topics/units and learning outcomes:				
1.	Physical basis of magnetism I1	An overview of the basic concepts of magnetism in				
		concrete examples I1				
2.	Voltage and current ratios at R, L and C I2	Troubleshoot transient occurrences of R-L-C				
		circuits I2				
3.	R-L-C circuit - transient, oscillation and	Analysis of transient occurrences of R, L and C				
	damping I4	circuits I4				
4.	Alternating Currents - Mean and Effective	Variable size analysis I1				
	Value I1					
5.	Sine currents - vector representation I1	Sine magnitude analysis using vector				
		representation I1				
6.	Impedance I4	Solving simple networks with resistors, capacitors				
		and coils I4				
7.	AC power - power triangle, reactive power	Analysis of power in AC networks I5				
	compensation I5					
8.	Complex Account I3	Solving electrical circuits with complex account I3				
9.	Inductive Networks I3	Solving coil problems I3				
10.	Ideal transformer I6	Analysis of ideal transformer on replacement				
		scheme I6				
11.	Transformer with iron core - vector diagram I6	Analysis of transformers with iron core with				
		replacement scheme and vector diagram I6				
12.	Three Phase Current - Phase and Line Values I5	Three Phase Systems Task Solving I5				
13.	Three-phase Current power I5	Power analysis in three-phase systems I5				
14.	Synchronous and asynchronous motors I6	Analysis of synchronous and asynchronous				
		machines by alternate circuit and torque				
		characteristic I6				
15.	Transmission and distribution of electricity I6	Analysis of voltage levels in the transmission and				
		distribution system in the Republic of Croatia I6				

References

REFERENCES (compulsory/additional):
B. Kuzmanović: Osnove elektrotehnike II, ISBN:953-197-662-7, Element, 2005
Felja i dr.: Zbirka zadataka osnova elektrotehnike II, ISBN: 978-953-0-30645-5, Školska knjiga
N. Marinović: Opća elektrotehnika i elektronika II, ISBN: 978-953-0-30620-2, Školska knjiga

Exams for the academic year: 2022 ./ 2023 .

Exam dates: According to the schedule of exams for academic year : 2022./2023.

Contact information

1. Course Instructor/Lecturer:	
e-mail:	fzugcic@vuka.hr
Office hours / Consultations:	According to the deal
2. Course Instructor/Lecturer:	
e-mail:	akirin@vuka.hr
Office hours / Consultations:	According to the deal