

SYLLABUS PREDMETA

General information

Course title:	SIGNAL PROCESSING	
ISVU ¹ course code:	38252	
Studies in which the course is taught:	Professional Study Programme of Mechatronics	
Course Instructor:	Anamarija Kirin	
Course Assistant:	-	
ECTS credits:	5.0	
Semester of the course execution:	IV	
Academic year:	2022/2023	
Exam prerequisites:	-	
Lectures are given in a foreign language:	english	
Aims:	After this course students will understand basic signal processing methods and their application in practice and will be able to design systems for signal processing	

Course

Course structure	Number of contact	Number of contact	Student's requirements by
	hours per week:	hours per semester:	type of teaching:
Lectures:	2	30	attendance 80%
Tutorials:	2	30	attendance 80%
Practical (lab) sessions:	-	-	
Seminars:	-	-	
Field work:	-	-	
Other:	-	-	
TOTAL:	4	60	

Monitoring of students' work, knowledge evaluation and learning outcomes

Formation of the grade during the implementation of teaching: (Define from minimum 5 to maximum 10 learning outcomes)	 LEARNING OUTCOMES (upon completion of the course the student should be able to:) I 1: Execute operations on signals in time domain I 2: Determine system properties I 3: Apply Laplace and Fourier transform for system response calculation I 4: Explain electric filter transform function I 5: Construct electric filters using transform function approximation I 6: Analyze active and passive filters 	FACTORS AFFECTING THE GRADE (e.g. term paper, practical work, presentation,)	MAXIMUM NUMBER OF POINTS PER FACTOR
Alternative formation of the grade (II – I 10)	or alternative formation of the grade: I 1 – I 6 written exam 70% of final grade-I1. I2, I3, I4, I5, I6 oral exam 30% of final grade		TOTAL: 100 points
Students' competencies	Students will have a general understa processing systems and will be able t		models and signal

Prerequisites for course	attendance
approval (lecturer's	
signature):	

¹ ISVU – Information System of Higher Education Institutions in Croatia

SYLLABUS PREDMETA

Prerequisites for taking	lecturer's signature
exams:	
Grading scale:	(According to the Regulations on student assessment of Karlovac University of
	Applied Sciences, Article 9, Paragraph 5)
	90-100 - excellent (5) (A)
	80 to 89.9 - very good (4) (B)
	65 to 79.9 - good (3) (C)
	60 to 64.9 - sufficient (2) (D)
	50 to 59.9 - sufficient (2) (E)
	0 to 49.9 – fail (1) (F)
	Students are graded during class, what forms 70% of final exam. Students who
	achieve 50% (35 points) and more are allowed to take the final exam. The score on
	final exam makes 30% of the final grade.

ECTS structure

ECTS credits allocated to the course reflect the total burden to the student during adoption of the course content. Total contact hours, relative gravity of the content, effort required for exam preparation, as well as, every other possible burden are taken in account: Attendance **Term paper** Composition Presentation Continuous **Practical work** assessment and (active evaluation participation) 0.5 Independent Project Written **Oral exam** Other work exam 1.5

Review of topics/units per week associated with learning outcomes

3

Week	Lectures topics/units and learning	Tutorials topics/units and learning outcomes:
	outcomes:	
1.	Basic signal and system concepts I1	Basic concepts applied on specific signal/system I1
2.	Basic operations on signals I1	Applaying basic operations on common signals I1
3.	Basic system properties I2	System classification and analysis I2
4.	Fourier transform I3	Solving Fourier transform problems I3
5.	Laplace transform I3	Solving Laplace transform problems I3
6.	Applications of the Fourier and Laplace	Modulation and frequency response I3
	transform I3	
7.	Passive network response to a signal I4	Analyzing RC and CR network response to a signal I4
8.	Normed low pass (LP) filters I4	Solving problems with normed low pass (LP) filters I4
9.	Transformation of LP prototype to filter I4	Transforming specific LP prototypes to filter I4
10.	Butterworth approximation I5	Designing Butterworth filter I5
11.	Chebyshev approximation I5	Designing Chebyshev filter I5
12.	Bessel approximation I5	Designing Bessel filter I5
13.	Passive filters I6	Solving problems with passive filters I6
14.	Active filters with operational amplifiers I6	Solving problems with active filters I6
15.	D/A i A/D converter I6	Converting digital to analog signals I6

References

REFERENCES (compulsory/additional): Ambardar A., Analog and Digital Signal Processing, Brooks/Cole Publishing Company, 2,1998. Tan, J.J.L., Fundamentals of Analog and Digital Signal Processing, AuthorHouse, 2, 2008

Exams for the academic year: 2022/2023

SYLLABUS PREDMETA

Exam dates:

According to the schedule of exams for academic year : 2022/2023

Contact information

1. Course Instructor/Lecturer:	Anamarija Kirin
e-mail:	akirin@vuka.hr
Office hours / Consultations:	Wednesday, 11:00, room 110, Ivana Meštrovića 10